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The sulfonyl group finds extensive applications in organic and
medicinal chemistry both in sulfonamides, popular as robust
protecting groups for amines,1 and in sulfones.2 Frequently, sulfones
are introduced into synthetic schemes to assist particular transfor-
mations; further progress along the synthetic route can later require
the removal of a sulfone group, and this can be achieved by
reductive desulfonylation2,3,6 or, in the special cases ofR-halo- or
â-acyloxysulfones, by elimination to an alkene.2-5

For reductive removal of sulfones and for reductive cleavage of
classic sulfonamides, different methods2,3 use alkali metals (Li, Na,
K), lithium naphthalenide, SmI2 with HMPA, or LiAlH 4 in the
presence of nickel compounds. All these reduction methods are
mediated by highly aggressive metal-containing reducing agents.
Electrochemical reduction is also used for the reductive cleavage
of aryl sulfones7 (ArSO2R) and sulfonamides.8 With typical
reduction potentials of-2.3 V,8b they pose some of the greatest
challenges in functional group reduction.

In this paper, we report the first reductive cleavage of sulfones
and sulfonamides with aneutral organicelectron donor, operating
in its ground state, a member of the family of reagents that were
recently named the “super-electron-donor” reagents.9 These com-
pounds are tetraazaalkenes that on oxidation afford radical cations
and dications stabilized by aromaticity.

We recently disclosed10 the ability of the super-electron-donor
reagent bisbenzimidazolylidene111 to reduce aryl iodides and alkyl
iodides in excellent yields to the corresponding radicals. Although
1 is a powerful reducing agent,11,12 it was not powerful enough to
reduce sulfones or sulfonamides. Accordingly, more powerful
reducing agents were sought, and bisimidazolylidene3 was
selected.9,11 Compound 3 has previously been prepared11 by
electrochemical reduction of the disalt4; it shows a 2-electron wave
[E1/2 (DMF)11a ) -1.20 V vs SCE] and thus3 is a significantly
better reducing agent than1. We have very recently devised an
easy preparation of3 from 2 (Scheme 1),9 which, in turn, is simply
formed from imidazole and diiodopropane. Although its organic
chemistry had not previously been explored, we have shown9 that
3 is the first neutral organic molecule to form arylanions from
iodoarenes by double electron-transfer.

To test the reactivity of donor3, three monosulfones were now
tested. Sulfone5 underwent conversion to the alkene8 in high yield
(79%). Similarly, sulfone6 was cleanly converted (97%) into
hydrocarbon9. However, the “unactivated” sulfone7 afforded only
starting material. This made it clear that reagent3 would selectively
cleave mildly activated sulfones. The most useful group of such
sulfones are the gem-disulfones; such disulfones are widely used
in synthesis.2 They are normally reductively cleaved with alkali
metals1,2 to the corresponding monosulfone anions20. Accordingly,
we assayed3 against disulfones10-13. We were pleased to isolate
excellent yields (94-98%) of the monosulfones14-17 after

workup and chromatography. The oxidation products of3, that is,
the corresponding radical-cation (not shown) and the dication4,
are water-soluble salts, allowing easy purification of products14-
17.

In these reactions, electron-transfer to the arenesulfonyl group
affords the radical-anion18 that could fragment to give either
[radical 19 + anion22] or [anion 20 + radical21] (see later for
further discussion). Transfer of a further electron under the reaction
conditions should lead to the pair of anions20 + 22. Confirmation
of the presence of the anion22came from a repeat of the reduction
experiment for substrate11. At the end of the experiment
iodomethane (excess) was added, affording phenyl methylsulfone,
PhSO2Me 23 (86%).

It is known that geminal disulfones are activated relative to
monosulfones,8b and also that aryl allylsulfones and aryl benzyl-
sulfones ArSO2CH2Ar′ undergo more facile cleavage than aryl
alkylsulfones ArSO2R,8b but analysis of the nature of the activations

Scheme 1. Preparation of Donor 3 and Reactions with Sulfones
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has not previously been undertaken. To understand the basis of
the selectivity seen above, computational investigations were carried
out that examined the nature of the electron-transfer reactions and
the fragmentation of the radical anions. These studies show that
the activation energy required for the electron transfer to7 is much
larger than in the case of5, 6, or 10 and that this is the crucial
factor associated with nonreaction of7 (see Supporting Informa-
tion). For5, 6, and10, low activation energy is associated with the
electron transfer and simultaneous dissociation into a sulfinate anion
occurs spontaneously. This dissociation can be explained from an
orbital perspective, where the LUMOs of5 and 6 have a much
greater overlap than7, with theσ*-orbital of their respective scissile
C-S bonds (see Supporting Information). Thus, this larger overlap
explains the spontaneous dissociation of the radical anions derived
from 5 and6 and the lack of cleavage for the radical anion derived
from 7.

Reductions of sulfonamides with reagent3 were then addressed,
testing three substrates24-26 that featured different degrees of
stabilization in their nitrogen leaving groups. The indolesulfonamide
24 underwent cleavage to27 in 91% yield over 4 h. The
anilinesulfonamide25 was likewise reacted and over 18 h gave a
very satisfactory 74% yield of28. However, the piperidine
derivative26 did not react. Computational studies show that in
analogy to7, the inactivity of26 is a result of the large activation
energy associated with the electron transfer, due to the instability
of the radical anion (see Supporting Information for details). It has
been proposed that cleavage of sulfonamide radical anions should
result in aminyl radicals and sulfinate anions,8b but the issue has
never been explored in detail. Analysis of the radical anions derived
from 24 and 25, reveals a spontaneous reaction, akin to a
fragmentation followed by a loose association of the two fragments;
in each case, the associated complex might best be described as a
three-electron N-S bonded intermediate.13 For indole substrate24,
the charge distribution shows that the negative charge is principally
associated with the indole, possibly reflecting the aromatic stabiliza-
tion of the developing anion. In the case of aniline derivative25,
the intermediate shows the negative charge principally associated
with the arenesulfonyl unit (see Supporting Information).

As mentioned above, typical sulfones and sulfonamides have very
negative reduction potentials, typically-2.3 V vs SCE.8b As with
halides, their reduction can be achieved by electron-transfer from
molecules with less negative redox potentials, provided that the
radical-anion from the sulfone or sulfonamide can undergo relatively
rapid fragmentation.8b Whereas direct electrochemical reduction of
these groups requires operation at potentials close to the standard
reduction potentials, indirect electrochemical reduction can be
achieved8b,14 by using an electrode to reduce a mediator such as
pyrene (E° ) -2.018 V) or anthracene (E° ) -1.8908 V) to the
corresponding radical-anion. However, these radical ions are

charged and, as seen from their redox potentials, relatively
aggressive species. In our case, reagent3 is neutral and operates at
much milder potentials (E1/2 ) -1.20 V). Moreover, as3 has
already been prepared from electrochemical reduction of its dication
4,11 the whole process could be driven electrochemically at very
mild potentials, if desired.

Reagent3 has several advantages: (i) it is neutral; (ii) it can be
conveniently prepared from imidazole and diiodopropane, followed
by treatment with base; (iii) although it could be used as a reagent
coupled to an electrochemical reduction, it can, as here, be
completely decoupled from electrochemistry; this avoids possible
complications with fouling of electrodes; (iv)3 is used here in
conventional glassware and in organic solvents without added
electrolytes; (v) higher temperatures can be used than are routinely
possible in electrochemical operation; (vi) since electron-donor3
is available as a pure organic solid, the starting concentration of
the reducing agent can be controlled; this contrasts with indirect
electrochemistry, where the active reducing agent must be produced
in situ.

In summary, donor3 is the first neutral organic reagent to reduce
arenesulfonyl groups in sulfones and sulfonamides. Unlike the alkali
metals, the reagent shows pronounced selectivity for substrates that
are slightly activated. The ease of preparation of these SED reagents,
their mildness as neutral reagents, and the clear possibilities to
modulate their structures and hence their reactivity (cf.1 and 3)
suggest wide applications in reductive transformations.
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Scheme 2. Reductive Cleavage Experiments with Sulfonamides
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